Refine Your Search

Topic

Author

Search Results

Technical Paper

Steer Assistance Control for Improved Vehicle Response

2014-04-01
2014-01-0109
Advanced research in ABS (Anti-lock Braking System), traction control, electronic LSD's (Limited Slip Differential) and electrical powertrains have led to an architecture development which can be used to provide a controlled yaw moment to stabilize a vehicle. A steer assistance mechanism that uses the same architecture and aims at improving the vehicle response to the driver steering inputs is proposed. In this paper a feed-forward approach where the steering wheel angle is used as the main input is developed. An optimal control system is designed to improve vehicle response to steering input while minimizing the H2 performance of the body slip angle. The control strategy developed was simulated on a 14 DOF full vehicle model to analyze the response and handling performance.
Technical Paper

NOx Reduction in SI Engine Exhaust Using Selective Catalytic Reduction Technique

1998-02-23
980935
Copper ion-exchanged X-zeolite with urea infusion was tested for nitrogen oxide (NOx)conversion efficiency in this study. Temperature datapoints were obtained to arrive at peak activation temperatures. Variation of the air/fuel ratio showed the widening of the λ-window(the range of air-fuel ratios over which the NOx conversion efficiency is considerable); a maximum of 62% NOx conversion efficiency was obtained in the lean-burn range. Effects of space velocity variations were also observed. In order to minimise the deactivation of zeolite caused by water, ammonium carbonate and ammonium sulphate were deposited on the copper ion-exchanged X-zeolite and the corresponding NOx conversion efficiencies measured. Ammonia slip (leakage of unreacted ammonia), a prospective pollution hazard, was observed to be more in case of urea infusion than ammonium salt deposition at higher temperatures.
Technical Paper

Hydrocarbon Modeling for Two-Stroke SI Engine

1994-03-01
940403
Hydrocarbon emissions due to short-circuiting of the fresh charge during scavenging process is a major source of pollution from the two-stroke spark ignition engines. This work presents a prediction scheme for analysis of hydrocarbon emission based on the material balance considerations. A generalized form of globular combustion equation has been used for general applicability of the scheme to any fuel or fuel blends. The influence of mixture quality, scavenging characteristics, residual contents and the delivery ratio are predicted. A good qualitative prediction has been established at all delivery ratios. The predictions are found quantitatively satisfactory in the higher delivery ratio range where the short-circuiting phase of the scavenging process is dominant.
Technical Paper

Performance of Thin-Ceramic-Coated Combustion Chamber with Gasoline and Methanol as Fuels in a Two-Stroke SI Engine

1994-10-01
941911
The performance of a conventional, carbureted, two-stroke spark-ignition (SI) engine can be improved by providing moderate thermal insulation in the combustion chamber. This will help to improve the vaporization characteristics in particular at part load and medium loads with gasoline fuel and high-latent-heat fuels such as methanol. In the present investigation, the combustion chamber surface was coated with a 0.5-mm thickness of partially stabilized zirconia, and experiments were carried out in a single-cylinder, two-stroke SI engine with gasoline and methanol as fuels. Test results indicate that with gasoline as a fuel, the thin ceramic-coated combustion chamber improves the part load to medium load operation considerably, but it affects the performance at higher speeds and at higher loads to the extent of knock and loss of brake power by about 18%. However, with methanol as a fuel, the performance is better under most of the operating range and free from knock.
Technical Paper

The Influence of High-Octane Fuel Blends on the Performance of a Two-Stroke SI Engine with Knock-Limited-Compression Ratio

1994-10-01
941863
The use of alcohol-gasoline blends enables the favorable features of alcohols to be utilized in spark ignition (SI) engines while avoiding the shortcomings of their application as straight fuels. Eucalyptus and orange oils possess high octane values and are also good potential alternative fuels for SI engines. The high octane value of these fuels can enhance the octane value of the fuel when it is blended with low-octane gasoline. In the present work, 20 percent by volume of orange oil, eucalyptus oil, methanol and ethanol were blended separately with gasoline, and the performance, combustion and exhaust emission characteristics were evaluated at two different compression ratios. The phase separation problems arising from the alcohol-gasoline blends were minimized by adding eucalyptus oil as a co-solvent. Test results indicate that the compression ratio can be raised from 7.4 to 9 without any detrimental effect, due to the higher octane rating of the fuel blends.
Technical Paper

Spark-Assisted Alcohol Operation in a Low Heat Rejection Engine

1995-02-01
950059
This work demonstrates how the performance of a standard spark-assisted alcohol engine can be improved by using the Low Heat Rejection (LHR ) concept. The improved combustion is attained by better using the greater heat energy in the combustion chamber of a LHR engine - in this case for the faster vaporisation and better mixing of the alcohol fuels. For this program the LHR engine used has a single cylinder diesel and alcohols sued as sole fuels were ethanol and methanol. For spark assistance an extended electrode spark plug was used and location and projection were optimised for best results. These configurations were evaluated for performance and emissions with and without LHR implementation. The results show that the engine with LHR, ethanol fuel and spark assistance has the highest brake thermal efficiency with the lowest emissions.
Technical Paper

Development and Performance Studies on Ion-Exchanged X-Zeolites as Catalysts for SI Engine Emission Control

1997-05-01
971652
Three catalysts based on X-zeolite have been developed by exchanging its Na+ ion with Copper, Nickel and Vanadium metal ions and tested in a stationary SI engine exhaust to observe their potentialities for NOx and CO controlling. The catalyst Cu-X, in comparison to Ni-X and V-X, exhibits much better NOx and CO reduction performance at any temperature. Maximum NOx conversion efficiencies achieved with Cu-X, Ni-X and V-X are 62.2%, 59.7% and 56.1% respectively. Unlike noble metals, the doped X-zeolite catalysts, studied here, maintain their peak NOx reduction performance through a wider range of A/F ratio. Back pressure developed across the catalyst bed is found to be well within the acceptable limits.
Technical Paper

Experimental Investigation of Multiple Injection Strategies on Combustion Stability, Performance and Emissions in a Methanol-Diesel Dual Fuel Non-Road Engine

2020-04-14
2020-01-0308
In this work methanol was port injected while diesel was injected using a common rail system in a single cylinder non-road CI engine. Experiments were conducted with single (SPI) and double (DPI - pilot and main) injection of the directly injected diesel at 75% load and at a constant speed of 1500 rpm. The effects of methanol to diesel energy share (MDES) and injection scheduling on combustion stability, efficiency and emissions were evaluated. Initially, in the SPI mode, the methanol to diesel Energy Share (MDES) was varied, while the injection timing of diesel was always fixed for best brake thermal efficiency (BTE). Increase in the MDES resulted in a reduction in NOx and smoke emissions because of the high latent heat of vaporization of methanol and the oxygen available. Enhanced premixed combustion led to a raise in brake thermal efficiency (BTE). Coefficient of variation of IMEP, peak pressure and BTE were deteriorated which limited the usable MDES to 43%.
Technical Paper

Diesel Engine Cylinder Deactivation for Improved System Performance over Transient Real-World Drive Cycles

2018-04-03
2018-01-0880
Effective control of exhaust emissions from modern diesel engines requires the use of aftertreatment systems. Elevated aftertreatment component temperatures are required for engine-out emissions reductions to acceptable tailpipe limits. Maintaining elevated aftertreatment components temperatures is particularly problematic during prolonged low speed, low load operation of the engine (i.e. idle, creep, stop and go traffic), on account of low engine-outlet temperatures during these operating conditions. Conventional techniques to achieve elevated aftertreatment component temperatures include delayed fuel injections and over-squeezing the turbocharger, both of which result in a significant fuel consumption penalty. Cylinder deactivation (CDA) has been studied as a candidate strategy to maintain favorable aftertreatment temperatures, in a fuel efficient manner, via reduced airflow through the engine.
Technical Paper

Spark Ignition Producer Gas Engine and Dedicated Compressed Natural Gas Engine - Technology Development and Experimental Performance Optimisation

1999-10-25
1999-01-3515
In the present study, a 17 kW, stationary, direct- injection diesel engine has been converted to operate it as a gas engine using producer-gas and compressed natural gas (CNG) as the fuels on two different operational modes called SIPGE (Spark Ignition Producer Gas Engine) and DCNGE (Dedicated Compressed Natural Gas Engine). The engine before conversion, was run on two other modes of operation, namely, diesel mode using only diesel and producer-gas-diesel-dual-fuel mode with diesel used for pilot ignition. The base data generated on diesel mode was used for performance comparison under other modes to ascertain the fuel flexibility. A technology development and optimisation followed by performance confirmation are the three features of this study. The exercise of conversion to SIPGE is a success since comparable power and efficiency could be developed. DCNGE operation also yielded comparable power with higher efficiency, which establishes the fuel flexibility of the converted machine.
Technical Paper

Simulation of Surface Densification of PM Gears

1999-03-01
1999-01-0334
This paper deals with simulation studies on surface densification of PM gears by rolling process using finite element method. The PM gear is considered as a porous continuum and analysis is performed using constitutive relations based on Gurson model for porous materials. The influence of various parameters such as initial position of mating gears, braking torque applied, friction between mating surfaces and roll stock allowance on the process have been studied. The density obtained by the process is highly influenced by the braking torque applied. The results presented provide a better understanding of the PM gear rolling process.
Technical Paper

Development of a Polymer Electrolyte Membrane Fuel Cell Stack for a Range Extender for Electric Vehicles

2019-01-09
2019-26-0087
Severe air pollution in cities caused largely by vehicular emissions, which requires urgent remedial measures. As automobiles are indispensable modes of personal and public mobility, pre-emptive efforts are necessary to reduce the adverse effects arising from their operation. A significant improvement in air quality can be achieved through large-scale introduction of vehicles with extremely low emission such as hybrid-electric and zero emission vehicles. Range extension of electric vehicles (EVs) is also of utmost importance to alleviate the handicap of restricted mileage of purely plug-in EVs as compared to conventional vehicles. This paper presents development of a polymer electrolyte membrane (PEM) fuel cell stack used for the range extender electric vehicles. The Fuel cell stack for range extender vehicle operated in a dead end mode using hydrogen and air as open cathode.
Technical Paper

Development of a Standalone Application in MATLAB to Generate Brake Performance Data

2019-04-02
2019-01-0513
Predicting the brake performance and characteristics is a crucial task in the vehicle development activity. Performance prediction is a challenge because of the involvement of various parts in the brake assembly like booster, master cylinder, calipers, disc and drum brakes. Determination of these characteristics through vehicle level tests requires a lot of time and money. This performance prediction is achieved by theoretical calculations involving vehicle dynamics. The final output must satisfy the regulations. This project involves the creation of a standalone application using MATLAB to predict the various brake performances such as: booster characteristics, adhesion curves, deceleration and pedal effort curves, behavior of brakes during brake and booster failed conditions and braking force diagrams based on the given user inputs. Previously, MS Excel and an application developed in the TK Solver environment was used to predict the brake performance curves.
Technical Paper

Effects of Compression Ratio and Water Vapor Induction on the Achievable Load Limits of a Light Duty Diesel Engine Operated in HCCI Mode

2019-04-02
2019-01-0962
Among the various Low Temperature Combustion (LTC) strategies, Homogeneous Charge Compression Ignition (HCCI) is most promising to achieve near zero oxides of nitrogen (NOx) and particulate matter emissions owing to higher degree of homogeneity and elimination of diffusion phase combustion. However, one of its major limitations include a very narrow operating load range owing to misfire at low loads and knocking at high loads. Implementing HCCI in small light duty air cooled diesel engines pose challenges to eliminate misfire and knocking problems owing to lower power output and air cooled operation, respectively. In the present work, experimental investigations are done in HCCI mode in one such light duty production diesel engine most widely used in agricultural water pumping applications. An external mixture preparation based diesel HCCI is implemented in the test engine by utilizing a high-pressure port fuel injection system, a fuel vaporizer and an air preheater.
Technical Paper

Evaluation of Lanthanum Based Diesel Oxidation Catalyst for Emission Reduction with and without Ceria Support

2016-02-01
2016-28-0023
Diesel particulates are mainly composed of elemental carbon (EC) and organic carbon (OC) with traces of metals, sulfates and ash content. Organic fraction of the particulate are considered responsible for its carcinogenic effects. Diesel oxidation catalyst (DOC) is an important after-treatment device for reduction of organic fraction of particulates. In this study, two non-noble metal based DOCs (with different configurations) were prepared and evaluated for their performance. Lanthanum based perovskite (LaMnO3) catalyst was used for the preparation of DOCs. One of the DOC was coated with support material ceria (5%, w/w), while the other was coated without any support material. Prepared DOCs were retrofitted in a four cylinder water cooled diesel engine. Various emission parameters such as particulate mass, particle number-size distribution, regulated and unregulated emissions, EC/OC etc., were measured and compared with the raw exhaust gas emissions from the prepared DOCs.
Technical Paper

An Experimental Study of Microscopic Spray Characteristics of a GDI Injector Using Phase Doppler Interferometry

2016-02-01
2016-28-0006
Gasoline Direct Injection (GDI) engine is known for its higher power and higher thermal efficiency. Researchers are steadily determining and resolving the problems of fuel injection in a GDI engine. In order to meet the stringent emission norms such as PM and NOx emitted by a GDI engine, it is necessary to investigate the microscopic spray characteristics and fuel-air mixing process. This paper aims to share the fundamental knowledge of the interacting mixture preparation mechanisms at the wide range of fuel injection pressures. The investigations were carried out at five different fuel injection pressures viz: 40, 80, 120, 160, 200 bar, for 24 mg fuel per injection. A high speed CCD camera was used to determine the macroscopic spray characteristics of the GDI injector. It was found that spray penetration length increased with increasing fuel injection pressure. Phase Doppler Interferometry (PDI) was used to determine the droplet size and droplet velocity for different test fuels.
Technical Paper

Experimental and Numerical Study on Automotive Pleated Air Filters

2016-02-01
2016-28-0100
Nowadays, the automotive engines are downsizing, thus offering limited space for engine intake air filter media. This results in higher aerosol velocity through the filter media. At a higher velocity, the aerosol particles reenter into the fluid stream and thereafter penetrate through the filter media. This causes significant reduction in filtration efficiency. Here, an attempt is made to understand the particle penetration behavior of automotive engine intake air filter media. To establish the flow field, numerical simulations are carried out on a panel type pleated air filter with pleat height 26 mm, pleat pitch 4.5 mm and pleat angle 2.50 degree. A series of tests are conducted using ISO 12103 A2 fine dust on a flat cellulosic paper filter media at a range of velocities derived numerically. The methodology followed for modeling the fibrous media using finite volume commercial CFD code for analyzing the flow field is presented.
Technical Paper

Accident Analysis of a Two-Lane National Highway in India

2015-01-14
2015-26-0162
Road accidents and persons killed in India have been reported to the tune of 4,90,383 and 1,38,258 respectively during 2012. On National Highways (NHs), major share of accidents (about 29%) and number of persons killed (35.3%) are observed out of total accidents. National Highways in India constitute about 2% of total road network (92,851 km) in India, but carries about 40% of traffic. 46% (42,829 km) of NHs in India comprises of two-lane and about 19% (17239 km) of NHs are single or intermediate-lane. Road accidents being multi-disciplinary in nature involves attention of multiple departments such as Highways Authority, Police, Motor Vehicles, Automobile Manufacturers, NGOs, etc. Owing to spurt in growth of motor vehicle population in India, road accidents are not reduced significantly despite improvement in NHs (widening of carriageway and riding quality).
Technical Paper

Reducing NO in a Biodiesel Fueled Compression Ignition Engine - An Experimental Study

2015-09-06
2015-24-2483
The replacement of fossil diesel with neat biodiesel in a compression ignition engine has advantage in lowering unburned hydrocarbon, carbon monoxide and smoke emissions. However, the injection advance experienced with biodiesel fuel with respect to diesel injection setting increases oxides of nitrogen emission. In this study, the biodiesel-NO control is attempted using charge and fuel modification strategies with retarded injection timing. The experiments are performed at maximum torque speed and higher loads viz. from 60% up to full load conditions maintaining same power between diesel and biodiesel while retarding the timing of injection by 3 deg. crank angle. The charge and fuel modifications are done by recycling 5% by volume of exhaust gas to the fresh charge and 10% by volume of methanol to Karanja biodiesel.
Technical Paper

Optimizing the Strength and Ductility of Al-6061 Alloy by Various Post-Rolling Ageing Treatments

2014-04-28
2014-28-0022
The effect of different cold- rolling and cryo-rolling routes on the strength and ductility of Al-6061 alloy was thoroughly investigated. Rolling decreased the grain size and increased the strength according to the Hall-Petch relationship. However subjecting the samples to ageing at different temperatures and for different time period increased the strength and improved the ductility. The ductility was improved due to the rearrangement and even decrease in dislocation density due to recovery and recrystallization during ageing while the strength was maintained due to ageing. Evolution of microstructure was investigated by optical microscopy, scanning electron microscopy. Preliminary hardness measurements coupled with tensile tests indicate the improvement of both yield strength and ductility. The disparity in ultimate tensile strength, yield strength and the elongation to failure with different ageing temperatures and for different time period is determined and discussed.
X